ترکیب داده‌های لایدار و تصاویر هوایی بر مبنای شبکه‌های عصبی کانولوشن به‌منظور تشخیص مدل ساختمان‌ها

نویسندگان

چکیده مقاله:

ساختمان­ها یکی از مهمترین سازه­های شهری هستند که در کاربردهای مختلف و در نقشه­برداری شهری مورد استفاده قرار می­گیرند. در سال­های اخیر، با توسعه تکنولوژی اخذ داده­ها با توان تفکیک بالا، روش­ها و الگوریتم­های مختلفی به منظور استخراج مدل­های دقیق و بهنگام ساختمان­ها ارائه شده است. در این مقاله، روشی نوین و مدل­مبنا به منظور استخراج ساختمان­ها و شناسایی اتوماتیک مدل سقف آنها از قبیل سقف مسطح، شیروانی، شیبدار و هرمی ارائه شده است که در آن از شبکه­های عصبی با معماری عمیق به منظور یادگیری سلسله مراتبی ویژگی­های استخراج شده از داده­های لایدار و تصاویر ارتوفتو استفاده می­شود. مهمترین مراحل این روش عبارتند از: آموزش مدل و یادگیری، بخش­بندی تصویر، استخراج ویژگی، و برچسب زدن عوارض. کلیه این مراحل در یک ساختار نظارت شده و با استفاده از یک شبکه عصبی کانولوشن که از قبل آموزش دیده شده است، اجرا می­شوند تا یک سیستم تشخیص الگوی اتوماتیک برای تشخیص انواع مختلف ساختمان­ها در یک ناحیه شهری فراهم گردد. در این روش، اطلاعات ارتفاعی، تولیدکننده­ی ویژگی­های هندسی پایدار برای شبکه عصبی کانولوشن هستند که در تعیین موقعیت محدوده هر سقف به کار گرفته می­شوند. شبکه عصبی کانولوشن یکی از انواع شبکه­های عصبی رو به جلو و با مفهوم درک و فهم چندلایه­ای است که شامل تعدادی لایه کانولوشن و نمونه­برداری می­باشد. از آنجایی که در روش پیشنهادی، مجموعه داده­ی آموزشی یک کتابخانه کوچک از مدل­های برچسب­دار است، لذا زمان محاسباتی برای یادگیری با استفاده از مدل­های از قبل آموزش دیده، به طور قابل توجهی کم و در حدود چند ساعت است. نتایج حاصله، نشان­دهنده موثر بودن تلفیق داده­های ارتفاعی و تصاویر رنگی با هم در یادگیری عمیق به منظور استخراج ساختمان­ها و شناسایی مدل سقف آنها به صورت همزمان است به طوری که خطای حد بالای اول و دقت آموزش مدل حاصل از تلفیق این دو دسته داده به ترتیب حدود 05/0 و 95 درصد است. همچنین، میزان موفقیت و صحت شناسایی ساختمان­ها به ترتیب حدود 97 و 69 درصد است.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ترکیب داده های لایدار و تصاویر هوایی بر مبنای شبکه های عصبی کانولوشن به منظور تشخیص مدل ساختمان ها

ساختمان­ها یکی از مهمترین سازه­های شهری هستند که در کاربردهای مختلف و در نقشه­برداری شهری مورد استفاده قرار می­گیرند. در سال­های اخیر، با توسعه تکنولوژی اخذ داده­ها با توان تفکیک بالا، روش­ها و الگوریتم­های مختلفی به منظور استخراج مدل­های دقیق و بهنگام ساختمان­ها ارائه شده است. در این مقاله، روشی نوین و مدل­مبنا به منظور استخراج ساختمان­ها و شناسایی اتوماتیک مدل سقف آنها از قبیل سقف مسطح، شیروا...

متن کامل

بررسی شبکه های عصبی کانولوشن عمیق جهت تشخیص سرطان پستان در تصاویر ترموگرافی

چکیده زمینه و هدف: سیستم‌های تشخیص Computer-aided design به طور گسترده در تشخیص افتراقی سرطان سینه استفاده می‌شوند. بنابراین بهبود دقت یک سیستم CAD به یکی از حوزه‌های مهم تحقیقاتی تبدیل شده‌است. در این مقاله به بررسی سیستم های CAD مبتنی بر شبکه های عصبی عمیق از نوع کانولوشن در جهت تشخیص سرطان پستان در تصاویر ترموگرافی پرداخته شد. روش بررسی: برای تحلیل مدل‌ها از پایگاه داده “Database...

متن کامل

ترکیب ماشین بردار پشتیبان و مدل‌های پیش آموزش دیده‌ی شبکه عصبی کانولوشن به منظور طبقه‌بندی تومورهای مغزی در تصاویر ام‌آر‌آی

به دلیل محل رشد تومورهای مغزی در سر انسان، معمولا احتمال مرگ بر اثر این تومورها، شش برابر بیشتر از تومورهای دیگر است. سیستم‌های کامپیوتری را می‌توان برای کاهش تجویز درمان‌های نامناسب و کمک به متخصصان در تشخیص این بیماری استفاده کرد. در این مقاله از یک الگوریتم جدید به‌منظور تشخیص تومورها در 900 تصویر ام‌آر‌آی استفاده شده است. این الگوریتم مشتمل بر چهار فاز اصلی است که در فاز اول بعد از ورود داد...

متن کامل

ارائه روشی مبتنی بر آنالیز قانون مبنای اشیاء تصویری به منظور تشخیص راه در مناطق شهری با استفاده از تصاویر ماهواره‌ای با قدرت تفکیک بالا و داده‌های لایدار

تشخیص راه ها در مناطق شهری، از اهمیت بیشتری برخوردار بوده و همواره به عنوان یکی از مباحث اصلی در تحقیقات گروه های سنجش از دور مورد توجه قرار گرفته است. با توجه به تنوع خصوصیات طیفی و هندسی و همچنین شباهت طیفی و هندسی پیکسل‌های راه با سایر عوارض از جمله ساختمان‌ها، پارکینگ‌ها و پیاده‌روها و عدم پیوستگی عوارض راه به علت مجاورت با عوارضی نظیر اتومبیل و درختان، شناسایی دقیق راه‌های شهری از طریق تصا...

متن کامل

تشخیص و فیلترینگ هوشمند تصاویر نامتعارف به‌کمک شبکه‌های عصبی عمیق

Currently vast improvement of internet access and significant growth of web based broadcasters have resulted in distribution and sharing of informative resources such as images worldwide. Although this kind of sharing may bring many advantages, there are certain risks such as access of kids to porn images which should not be neglected. In fact, access to these images can be a threat to the cult...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 4

صفحات  103- 121

تاریخ انتشار 2017-03

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023